Application of an Object-Oriented Parallel Run-Time System to
a Grant Challenge 3d Multi-Grid Code

Clive Baillie
Dirk Grunwald
Suvas Vajracharya

CU-CS-780-95

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Application of an Object-Oriented Parallel Run-Time System to a Grant
Challenge 3d Multi-Grid Code

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 12
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Application of an Object-Oriented Parallel Run-Time System
to a Grand Challenge 3d Multi-Grid code

Clive Baillie

Dirk Grunwald

Suvas Vajracharya

Department of Computer Science
Campus Box 430, University of Colorado
Boulder, CO 80309-0430

Abstract

We have taken a Grand Challenge 3d Multi-Grid
code, QGMQG, initially developed on the Cray C-90 and
subsequently parallelized for MPPs, and implemented
it using the DUDE object-oriented, runtime system
which combines both task and data parallelism. The
QGMG code is a challenging application for two
reasons. Firstly, as in all multigrid solvers, the most
straightforward implementation requires that most of
the processors idle at barrier synchronizations. Sec-
ondly, the QGMG code is an ezample of an application
that requires both task and data parallelism: two
multigrids (task parallelism) must be solved and each
multigrid solver contains data parallelism. To address
these challenges, DUDE loosens the requirement that
all processes must wait at barriers, and provides
integrated task parallelism and data parallelism. In
this paper we describe the QGMG code and the DUDE
object-oriented, runtime system in detail, explaining
how we parallelized this Grand Challenge application.

1 Introduction

We are associated with an NSF “Grand Challenge”
application group modeling turbulence in a variety of
media. One program, the QGMG (Quasi-Geostrophic
Multi-Grid) application, currently achieves 6 Gflops
on a Cray C90. We are using this code as one of
our reference problems for improving runtime system
performance.

Over the last year the QGMG code was imple-
mented it in a portable parallel way on most of todays
MPPs (Massively Parallel Processors) [1]. This was
done via domain decomposition and message passing
using PVM and MPI. Currently, on 512 processors of
the Cray T3D the code runs at over 6 Gflops and on
256 processors of the IBM SP2 at 5 Gflops.

The existence of standards such as MPI and PVM
on various platforms make porting of a program like
QGMG written in message passing paradigm simple.
The performance of these programs is also quite good
since message passing encourages programming with
data locality in mind which is essential for distributed
memory machines. However, developing programs
using these packages is onerous and it is difficult to
ensure correctness of these programs since the mes-
sage passing paradigm forces the programmer to be
responsible for synchronization, data communication
and data decomposition. For example, the QGMG
code more than doubled in total number of lines when
we converted the sequential code to a parallel one
using PVM.

Alternatively one can write parallel programs using
thread packages such as PTHREADS. Many par-
allelizing compilers like KSR FORTRAN are built
on top of such thread packages. These packages
support task parallelism using stateful threads and
synchronization mechanisms such as barriers and
semaphores. The user is responsible for determining
the appropriate granularity, choosing the right syn-
chronizations, and considering data locality. Because
of the overhead cost of context switching and the data
locality concerns, one normally creates only one thread
per processor, each thread executing the same code
over different data. A consequence of this SPMD style
execution is that processors must idle if the thread
running on it blocks due to communication latencies
or due to synchronizations.

In this paper we present three implementations of
the QGMG code: using MPI message passing, using
a traditional thread package, and a new method using
the DUDE runtime system. The goal of DUDE is to
provide a user-level library or a compiler target that
provides superior performance while freeing the user
from the concerns of data locality, synchronization,
scheduling and the appropriate granularity.

We show how this integrated runtime system can
be designed to perform both loop-level scheduling and
task scheduling. Our runtime system is designed for
shared memory computers that imay be connected
using a message passing interface. We assume the
shared memory computers have a pronounced memory
hierarchy; examples of such architectures are the KSR-
1 [2] and distributed shared memory systems [3].
Compilers must target a specific machine model sup-
ported by the runtime system, and we feel the art of
designing a runtime system is to provide an interface
with the most generality that can be implemented
efficiently across a number of systems. More general
constructs allow the compiler to defer scheduling
decisions until execution time, when they can be
optimized by the runtime system; however, this only
works if the runtime system is efficient.

Our runtime system uses a macro-dataflow ap-
proach; the definition, or producer, of data and the
use, or consumer, of that data are explicitly specified
during execution. This distributes synchronization
overhead and provides a very flexible scheduling con-
struct. We call our runtime system the Definition-
Use Description Environment, or DUDE, and it is
currently implemented as a layer on top of the existing
AWESIME threads library [4]. Normally, dataflow
execution models have been associated with dataflow
processors [5, 6], but the macro-dataflow model has
been implemented in software as well [7, 8]. Often,
as in the case of MENTAT [9], an entire language
is designed around the macro-dataflow approach. By
comparison, we simply use the macro-dataflow notions
to provide a description of the dependence relations in
a program. In many ways, the DUDE system is a fusion
of existing macro-dataflow techniques with thread and
loop-level scheduling systems.

The rest of the paper is organized as follows. We
begin by describing the the QGMG application and
implementations of it using MPI and the PTHREADS
thread package. This will then motivate the descrip-
tion of our runtime system DUDE itself in §4. In
section §5 we present some experimental results on
the KSR-1. Finally we conclude in §6 with further
extensions and future research directions.

2 The Quasi-Geostrophic Multi-Grid
code

Planetary-scale fluid motions in the Earth’s atmo-
sphere and oceans are influenced by strong stable
stratification and rapid planetary rotation. The

appropriate equations of motion for this asymptotic
regime are the Quasi-Geostrophic (QG) equations
[10]. The extremely turbulent nature of planetary
flows leads us to perform high-resolution numerical
simulations of QG turbulence in an effort to better
understand the large-scale flows which are so impor-
tant to the Earth’s climate. Due to stratification
and rotation, QG flow is nearly incompressible in

horizontal planes.

Over the last few years considerable effort has
been invested into adapting and developing multigrid
techniques for non-elliptic and singular perturbation
problems, such as the flows found at high Reynolds
number in stably stratified fluids. Integration of the
QG equations requires solving an elliptic boundary-
value problem in three dimensions even if the non-
linear advection equation for the potential vorticity is
integrated explicitly. Moreover, the vertical-derivative
term in this equation generally varies along the ver-
tical coordinate. The QGMG code uses a multigrid
algorithm, which is one of the best known methods for
this problem. Furthermore, the nonlinear advection
equation is discretized implicitly in time and the
entire system solved simultaneously, employing the so-
called Full Approximation Storage (FAS) version of
the multigrid algorithm. Grid-coarsening is done only
in the horizontal directions, with line relaxation in the
vertical.

The Multigrid technique has received much at-
tention due to it’s importance and the challenge of
parallelizing the algorithm [11] [12] [13] [14]. Multigrid
algorithms are used to accelerate the convergence of
relaxation methods like Gauss-Seidel for the numerical
solution of partial differential equations. They achieve
this by using a hierarchy of coarser grids with larger
spacings to provide corrections to the approximate
solution obtained on the finest grid. Thus there are
three parts to any multigrid algorithm: relaxation (or
smoothing) on a given grid, restriction from a fine to
a coarser grid and interpolation (or prolonging) back
from a coarse to a finer grid. The simplest restriction
operator is to simply copy some of the points from the
fine grid onto the coarse grid.

The algorithm we have described uses a V-cycle but
there are many variants. Restricting and prolonging
amounts to climbing up and down a pyramid of grids
where the base is the finest grid and the coarsest
grid is the top of the pyramid. It is easier to
understand the dependence constraints using a simpler
one-dimensional multigrid solver as an example. Fig-
ure 1 shows the dependence relations between levels
of a V-cycle for a one-dimensional problem. Each

Figure 1: Dependence relations in a 1-dimensional multigrid application during a single V-cycle.

circle represents the execution of a single iteration of
the relaxation function. Each level of the pyramid
consists of three operations: smooth the red elements
of the matrix, smooth the black elements, obtain an
approximation, and restrict to next coarsest grid level
if going up the pyramid or prolong to next finest
grid level if going down. There is a dependence
across the levels of the pyramids, as indicated by
the arrows. Normally, the dependence relations are
satisfied by completing all iterations in each level
before starting the next level. Figure 1 shows that this
is not necessary; the iteration indicated by the lower
darker circle can be started when the three iterations
on which it depends finish.

The conventional parallel implementation of the
multigrid method involves partitioning the finest grid
matrix among the available processors. There is
good processor utilization on fine grids but as the
algorithm climbs up the pyramid to coarser grids,
a majority of the processors need to idle at barrier
synchronizations. In addition, a conventional runtime
system does not support two multigrid solving tasks
being run concurrently. A third problem is that
barrier synchronization strictly forces an operation to
complete before the next one begins. The operations
described above (smooth, prolong, restrict) are only
dependent on neighboring elements to complete, not
the entire matrix. If we can allow processes to
continue with the next operation immediately after
their neighboring elements have been calculated, we
will have better processor utilization. The proposed

DUDE runtime system addresses these problems.

3 Threads

In the PTHREADS task parallel programming
model, P threads, where P is the number of processors
available, are created with each thread processing %
portion of the data. Figure 2 shows the flow of
execution of parallel programs under the SPMD style
programming using threads packages. At every barrier
operation, all processes must synchronize before going
on with the next operation. These are expensive syn-
chronizations since the threads will arrive at different
times at the barrier due to any one of the following
reasons: page faults, communication latency due to
remote memory address accesses, or execution of
different portions of the code due to conditionals that
are some function of the thread id. The completion
time of the barrier synchronization is determined by
the slowest thread. These costs do not seem to be
warranted in light of the fact that most dependence
relations in many applications do not involve all
threads. In red-black relaxation for example, a point
in the matrix is only dependent on its neighboring
points, not the entire matrix. Figure 3 shows the
possible flow of execution in many applications.

Figure 2: Traditional Fork-Join-Barrier structure.

4 DubpE

The DUDE runtime system is based on AWESIME [4]
(A Widely Extensible Simulation Environment), an
existing object-oriented runtime system for shared-
address parallel architectures. The AWESIME library
currently runs on workstations using DEC alpha AXP,
SPARC, Intel ‘x86’, MIPS R3000 and Motorola 68K
processors, as well as the Kendall Square Research
KSR-1 massively parallel processor. The AWESIME
library has been in use for a number of years, primarily
for efficient process-oriented discrete event simula-
tion — for example, Tera Computer Corporation uses
AWESIME for operating system simulations.

We have extended the AWESIME runtime system
to implement the Definition-Use Description Environ-
ment (DUDE). In DUDE, objects of class Thread are
a basic unit of task parallelism and objects of class
Iterate are a basic unit of data parallelism. Both
Thread and Iterate are subclasses of the PObject
(parallel object) class, which represents any unit of
parallelism managed by the scheduler. A Thread has
a stack and state information. As with many runtime
systems, the overhead of saving this state information
during context-switches can be minimized by creating
only one Thread per processor, but programmers are
able to create any number of threads. (In related work,
we are using whole-program compiler optimization
to reduce the space and time overhead for threads.)
Precedence constraints due to data dependences in the
application program can be satisfied for Threads using
the synchronization mechanisms supported by DUDE,
such as barriers or semaphores. These operations
only make sense for stateful concurrent objects that
can block and resume execution (i.e., threads). By
comparison, Iterates run to completion and are not

Figure 3: Inter-Loop execution.

context switched. Iterates cannot block on barriers
or semaphores since they have no state, instead,
explicit precedence information is used. Because
Iterateslack state, they can be created and managed
much more efficiently than threads.

The abstraction to PObject over these two sub-
classes allows applications to use both Thread and
Iterate objects. A Thread or Iterate can only
be created by sub-classing the existing classes. For
example, an iterate describing a particular computa-
tion would be represented by a subclass of Iterate.
All behavior specific to that computation will be
encapsulated in the subclass. In this paper, we
frequently refer to the activity of a Thread or Iterate,
but such references should be understood to refer to a
subclass of those classes.

As with all objects in C++, the class constructor
is invoked when an iterate or thread is created.
Arguments to the iterate or thread are specified in
the application program and are recorded in the
corresponding instance variables. Any PObject can
be bound to specific processors using the CPUaffinity
method. The PObject class provides a virtual func-
tion, main, to customize the activity of each thread or
iterate. The main method is the starting point for a
new Thread or Iterate and is provided by subclasses
of Thread and Iterate. Thus, the body of main can
be a unit of execution in a data parallel loop or the
body of a task.

Parallel objects are scheduled using a CpuMux, or
CPU multiplexor. There are several subclasses to the
CpuMux base class, defining the scheduling policy to be
used for specific application. Each CPU multiplexor
repeatedly selects a PObject to execute, and executes
that object. The execute method specialized for
Threads will context switch at this point, while an
Iterate will directly execute the function associated
with the individual Iterate object.

Dynamic dispatch based on object type is used
throughout AWESIME and DUDE. The CpuMux object
represents a hardware processor Using the object-
oriented model provided by C+-+, we provide special-
ized CpuMux subclasses for different parallel architec-
tures that provide different work-sharing strategies.
The most common work-sharing mechanism uses a
separate scheduler for each CpuMux, and CpuMux’s
“steal” from each other if they are idle. As another
example of dynamic dispatch, users can select a
barrier algorithm that is most appropriate to the
architecture [15] or problem.

The DUDE runtime system uses the abstraction and
inheritance constructs of C++ to keep the scheduling
policy, the underlying hardware, the type of objects
being scheduling, the type of synchronization and
other aspects of the system mutually orthogonal. As
we will see, we need not sacrifice efficiency for this
generality and modularity. Dynamic dispatch is also
the basis of loop scheduling using the Iterate class,
which we describe next in some detail.

4.1 Data Parallelism: Computation using
Iterates

Computation using Iterates consists of 1) data
decomposition, 2} data distribution, 3) data parallel
operation, and 4) dependence satisfaction — all of
which is handled by the runtime system. Data
decomposition is the process of converting raw data
such as a matrix into Iterate objects containing a
method and a descriptor to a submatrix. A block,
cyclic or any other decomposition method can be
used. These Iterates are distributed among the
available processors. The scheduling engine in each
processor picks up these Iterate objects and does
data parallel operations as specified in the method
of the objects. When a Iterate object completes,
the scheduler determines whether this completion of
this object can enable other Iterates depending on
it. If so, new Iterate objects are added to the queue.
This process is repeated until the queue of objects is
exhausted.

The Iterate class is the core construct for data
parallel computation in DUDE. The Iterate class
provides a mechanism that can best be described as
a large grain dataflow execution model. The goal is
to relieve the application programmer or the compiler
from concerns regarding locality of data, enforcement
of synchronization of data constraints, and scheduling.
Figure 4 shows a sample code for the red-black re-
laxation that the application programmer or compiler
provides. The main method is the operation that is

to be performed on the data. The descriptor specifies
a portion of the parallel loop accessed by the main
method. The lower bound, upper bound and the
stride can all be extracted from the descriptor. Each
Iterate also contains an internal loop control variable
and a loop terminating variable. All of these variables

are initialized in the Iterate’s constructor.

The remaining methods are used to deter-
mine the continuation of an Iterate. When an
Iterate finishes execution, the scheduler deter-
mines if the completed Iterate has satisfied any
precedence constraint. The scheduler calls the
getContinuationDescs method of the completed
Iterate which returns a list of data descriptors. Each
descriptor represents an arc in the precedence graph.
This descriptor is then used as a key to a table that
counts the number of Iterates that have finished and
the number needed to satisfy the dependence con-
straint. Constraints are satisfied if the count is equal
to the expected value of the dependence count. If the
constraints are satisfied, then the getContinuation
method is used to instantiate the continuation and
add this to the work heap. The runtime system
performs all the synchronization required to ensure
that the precedence constraints are satisfied. The
application programmer or the compiler need only
express the dependence information in the form of the
getContinuationDescs method.

Note that the dependence constraints also dis-
tribute the synchronization that occurs in the pro-
gram. In distributed shared memory computers, such
as the KSR-1, synchronization among a large number
of processors causes particular cache lines to become
hot-spots [16]. By distributing the activity over a
number of synchronization variables, the hardware
parallelism supported by the multiple communication
levels in a system such as the KSR can be exploited.

By providing the concept of dependence and use
specification in the runtime system, we can also
execute multiple parallel operations concurrently. The
QGMG program must solve two multigrid problems
to advance a single time-step. A traditional runtime
system, or even advanced systems such as the Chores
model [17], must sequentially schedule the computa-
tion in each doall or loop nesting. By allowing all
operations to be evaluated in parallel, we increase the
scheduling opportunities, allowing the runtime system
to select a better schedule.

The iteration space is initially subdivided into fixed
sized chunks, with each chunk being represented by
an Iterate object. If the processors experience load
imbalance, as determined by a scheduling heuristic,

/*

This describes the operation that the iterate computes on its
portion of data.

*/

void RedRelax::main()

{

for (short i = getSX(); i <= getEX(); i += getST()) {
for (short j = getSY(); j <= getEY(); j += getST()) {
mydatal[i]l [j] = Func(mydatali-1][j] + mydata[i] [j+1]
+ mydatali+11[j] + mydata[il [j-1]1);
mydata[i+i] [j+1] = Func(mydatal[i] [j+1] + mydatal[i+1][j+2]
+ mydatal[i+2] [j+1] + mydatali+1][j1);

}
/%

This method says that the continuation of the RedRelax iterate is the
BlackRelax iterate.

*/
BlackRelax *RedRelax::getContinuation(DESC desc)
{
return new BlackRelax(desc.I,desc.J);
¥
/%

This method gives the dependence info as a list of descriptors, one for
each arc leaving from this iterate to its children in the precedence graph.

*/
INDEX_DESC *RedRelax: :getContinuationDescs ()
{
// get current index to this Iterate.
int myI = getMyI();
int myJ = getMyJ();
INDEX_DESC *desc = FormIndexDesc({I,J}, {I-1,J}, {I+1,J}, {I,7-1}, {I,J+1});
return desc;
}

Figure 4: Some methods from the red-black relaxation Iterate.

these fixed sized Iterates may be further subdivided
during the execution of a parallel construct. When all
the subdivided chunks are completed in that iteration,
the original Iterate that was subdivided resuines
its initial size for successive executions. Partitioning
need not be concerned with the data dependence
specified in the Iterate since the partitions are only
in effect for the duration of one loop iteration. In
other words, completion of any one of the subdivided
parts is not sufficient to begin enabling continuations;
the entire portion must be completed. This reduces
the overhead of subdividing the computation, because
the dependence information of continuations does not
need to be modified.

The rational for initially decomposing an Iterate
into fixed sized parts is threefold. Firstly, fixed size
chunks simplify maintaining the dependence informa-
tion, and make that process more efficient. Allowing
variable sized chunks implies a less efficient data
descriptor that takes a range of values instead of
indices. We initially implemented such a structure,
similar to the Data Access Descriptor [18], but found
it was too slow in practice. Secondly, and more
importantly, fixed size chunks allow the scheduler to
establish an affinity between a chunk and the processor
thereby improving data locality. Each chunk has a
preferred processor when it is rescheduled on the next
iteration of the loop. This affinity is only compromised
if there is a great load-imbalance or there is insufficient
work left to be done. Thirdly, contention for a single
large chunk at the beginning of the computation is
avoided because each CPU can start with an Iterate
from its own local queue.

Initially these chunks or Iterates are distributed
to local queues of the CpuMux’s. The CpuMux for each
individual processor grabs an Iterate from the local
queue to process. If this queue 1s empty, it attempts
to steal work from another CpuMux. When the total
number of Iterates to schedule is below a certain
threshold, the CpuMux divides an Iterate, removing
it from the queue only when all its partitions have
completed. Upon completion of an Iterate, the
scheduler marks that object with its processor num-
ber. This information will be used in the next iteration
to decide which local queue should be preferred for this
Iterate.

Iterates are created as the program executes and
encounters parallel constructs. For example, the
execution of a doall corresponds to the creation
and scheduling of a collection of Iterates. Threads
wait for a specific parallel construct to complete
by blocking on a semaphore, and the continuation

Table 1: Speedups for 3d QGMG on KSR-1 and IBM
SP2.

Processors | KSR-1 | IBM SP2
1 .0

1 .0 1

2 1.4 1.8
4 2.8 3.1
8 1.9 4.4
16 1.8 10.1

for the Iterate representing a doall releases that
semaphore. The main program is represented by a
Thread, and can create additional threads or iterates
as needed.

5 Performance Results

We now give performance results for multigrid
solvers running with MPI, with PTHREADS, and
with DuDE. For the MPI results we have run the full
3d QGMG code for a problem size of 128x128x128
(timing only the multigrid part) to get the speedups
shown in Figure 5. For PTHREADS and DUDE we
have run the 2d multigrid kernel (of QGMG) solving
a 1024x1024 matrix; these speedups are shown in
Figure 6. We had hoped to have results for the entire
QGMG code using the DUDE runtime system on the
KSR-1 but unfortunately the machines we had access
to have all stopped working, due to the untimely
demise of the KSR corporation. We discuss each of
the results we did get in turn.

5.1 MPI

MPI on the KSR-1 is/was relatively new and
does not appear to be implemented very well as the
speedups we obtained are somewhat disappointing —
they are listed in the second column of Table 1. This
should be contrasted with the IBM SP2 on which MPI
is well implemented and the speedups for QGMG are
much better — third column of Table 1. We expect
that when/if MPIis tuned for the KSR-1 our speedups
will improve, at least to those of the SP2. Therefore on
the MPI performance graph, Figure 5, we have plotted
both the KSR-1 and the SP2 speedups.

5.2 PTHREADS

The input matrix is divided into equal numbers
of rows among the PTHREADS which are bound to

30.0 , ‘

20.0 r

10.0

Ve
,/
/f
/7
7/

——~ Ideal Speedup s
o——0 MPI on KSR1 yd
o——0 MPI on SP2 il 1

30.0

Figure 5: Speedups for full 3d QGMG code on the KSR-1 and IBM SP2.

physical processors. A barrier synchronization is used
between each of the following operations: smooth red,
smooth black, approximate, prolong and restrict. Due
to the halving of matrix dimension at the next highest
(coarsest) level, the number of processors participating
is also halved to reduce the contention towards the
top of the multigrid pyramid. Non-participating
processors simply idle at the higher levels. The second
performance graph, Figure 6, shows that the speedup
on the KSR-1 is similar to what is obtained with MPI
on the SP2 (Figure 5).

5.3 DUDE

To achieve both task and data parallelism, two
threads (task parallelism) are created. Each thread
starts a multigrid solver using Iterates (data par-
allelism). An Iterate class is created for each of the
five operations: relax the red elements, relax the black
elements, approximate, prolong and restrict. Initially
only the RedRelax Iterates are created and added
to the queues. As these complete and the prece-
dence constraints are satisfied, BlackRelax Iterates
(as specified in the getContinuation method of the
RedRelax Iterate class) are enabled, and so on.

After the Approximate Iterate completes, a choice
of enabling either the Restrict Iterate or the Prolong
Iterate must be made. This choice is made in
the getContinuation method of the Approximate
Iterate. Figure 6 shows that the multigrid solver
using Iterates achieves superlinear speedup (due to
locality) for small number of processors and near linear
speedup for higher number of processors. Moreover
the speedups with DUDE are significantly better than
the speedups for both MPI and PTHREADS. Thus
we expect that when the full 3d QGMG code is
implemented with DUDE the speedups will be similarly
impressive. It looks unlikely that we will be able
to do this on the KSR-1 parallel computer, however
as DUDE is portable we can do this on some other
machine and in fact we are currently working on DEC
alpha workstations.

6 Conclusions

We have described an extensible runtime system
for shared address architectures that supports both
task and data (or object) parallelism. Our current
implementation allows applications to specify prece-

30.0 x ,

o—@ lterates

20.0 - =% PTHREADS

——~ |deal Speedup

10.0 -

0.0

0.0 10.0

20.0 | 30.0

Figure 6: Speedups for 2d multigrid kernel on the KSR-1.

dence constraints between tasks and between different
data parallel computations. Preliminary results show
that for a data parallel application, we achieve better
performance using runtime representations of control
and data dependence than by using conventional
thread decompositions.

At the same time, our runtime system supports
Threads, so we can express task or control parallelism
between different sections of code that can execute in
parallel. This is particularly important for “coupled”
problems where we may be modeling two systems (for
example, structures & fluids, oceans & atmosphere)
concurrently. Combined thread and object parallelism
is also important in applications such as adaptive
mesh refinement, where data parallel operations are
performed over a number of different arrays.

One feature not stressed in this paper is that the
DUDE runtime system is designed to be eztensible,
allowing the customization of scheduling policies and
the introduction of new work-sharing structures. As
paralle] architectures are used for increasingly complex
problems, extensible runtime systems that exploit ad-
ditional degrees of parallelism within programs will be
needed. We believe that this paper demonstrates that
the object-oriented runtime systems offer excellent

performance, as well as allowing a great degree of
extensibility.

Using information from profiling the application
program, it is possible to determine its runtime behav-
ior and choose which scheduling policy is best suited
for maximum load balance and parallelism in different
sections of the program. For example, initialization of
the elements of a huge matrix can be done in a stat:-
cally scheduled parallel loop. A section of the program
that has varying size code in different parallel Threads
based on inputs to the program may perform best
with an adaptive scheduling policy. Thus, for better
load-balance and parallelism, it may be worthwhile to
change the scheduling policy dynamically as the pro-
gram executes. We are extending the DUDE runtime
system to support dynamically changing scheduling
policies, by customizing the scheduling function based
on profiling information from the application program.

We are also currently implementing the DUDE
runtime system on DEC alpha workstations with dis-
tributed shared memory using DEC memory channels.

Acknowledgements

This work was funded in part by NSF Grand

Challenge Applications Group Grant ASC-9217394,
ARPA contract ARMY DABT63-94-C-0029 and an
equipment grant from Digital Equipment Corpora-

tion.

References

[1] C.F. Baillie, J.C. McWilliams, J.B. Weiss and
I. Yavneh. Implementation and Performance of
a Grand Challenge 3d Quasi-Geostrophic Multi-
Grid code on the Cray T3D and IBM SP2. In
Supercomputing 95 (to appear), 1995.

[2] Kendall Square Research, Boston, MA. The
KSR-1 System Architecture Manual, April 1992,

[3] P. Keleher, S. Dwarkadas, A. Cox, and
W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating

systems. In Winter 94 Useniz Conference, pages
144-155, January 1994.

[4] D. Grunwald. A users guide to awesime: An
object oriented parallel programming and simu-
lation system. Technical Report CU-CS-552-91,
University of Colorado, Boulder, 1991.

[6] T. Agerwala and Arvind.
15(2):10-13, Feb 1982.

Data flow systems.

[6] G.M. Papadopoulos. Implementation of a
General-Purpose Dataflow Multiprocessor. MIT
Press, Cambridge, MA, 1991. (1988 MIT Ph.D.
Thesis, also published as MIT LCS TR 432).

[7] R. Babb. Parallel processing with large-grain
data flow techniques. IEEE Computer, pages 55—
61, July 1984.

[8] S. Ramaswamy and P. Banerjee. Processor allo-
cation and scheduling of macro dataflow graphs
on distributed memory multicomputers by the
paradigm compiler. In Proc. of the 1993 Intl
Conf. on Parallel Processing, volume II-Software,
pages 11-134-11-138. CRC Press, August 1993.

[9] A.S. Grimshaw, E.A. West and W.R. Pearson.
Easy to Use Object-Oriented Parallel Program-
ming with Mentat. JEEFE Computer, pages 39-51,
May 1993.

[10]

[18]

I. Yavneh and J.C. McWilliams. Multigrid
solution of stably stratified flows: the quasi-
geostrophic equations. In J. Sci. Comp. (to

annear) 1005

Wpplld'y/, «ood.

A. Brandt. FEliptic problem solvers. Academic
Press, New York, 1981.
D. Gannon and J. van Rosendale. On the

structure of parallelism in a highly concurrent
PDE solver. J. Parallel Distributed Computing,
3:106-135, 1986.

P. Frederickson and O. McBryan. Parallel su-
perconvergent multigrid. In Proc. of the Third
Copper Mountain Conf. on Multigird Methods,
pages 195-210. Marcel Dekker, 1989.

S.N. Gupta, M. Zubair and C.E. Grosch. A Multi-
grid Algorithm for Parallel Computers: CPMG.
J. Sci. Comp., 7:263-279, 1992.

D. Grunwald and S. Vajracharya. Efficient bar-
riers for distributed shared memory computers.
In 8th Intl. Parallel Processing Symposium, pages
604-608. IEEE Computer Society, April 1994.

G. Pfister and V. Norton. Hot spot contention
and combining in multistage interconnection net-
works. IEEE Transactions on Computers, C-

34(10):943-948, October 1985.

D.L. Eager and J. Zahorjan. Chores: Enhanced
run-time support for shared memory parallel
computing. ACM Trans. on Computer Systems,
11(1):1-32, February 1993.

V. Balasundaram. A mechanism for keeping use-
ful internal information in parallel programming
tools: The data access descriptor. Journal of
Parallel and Distributed Computing, 9:151-170,
1990.

